Focal adhesion kinase is a phospho-regulated repressor of Rac and proliferation in human endothelial cells
نویسندگان
چکیده
Focal adhesion kinase (FAK) is critically positioned to integrate signals from the extracellular matrix and cellular adhesion. It is essential for normal vascular development and has been implicated in a wide range of cellular functions including the regulation of cell proliferation, migration, differentiation, and survival. It is currently being actively targeted therapeutically using different approaches. We have used human endothelial cells as a model system to compare the effects of inhibiting FAK through several different approaches including dominant negatives, kinase inhibitors and shRNA. We find that manipulations of FAK signaling that result in inhibition of FAK 397 phosphorylation inhibit proliferation and migration. However, abolition of FAK expression using stable (shRNA) or transient (siRNA) approaches does not interfere with these cellular functions. The ability to regulate cell proliferation by FAK manipulation is correlated with the activation status of Rac, an essential signal for the regulation of cyclin-dependent kinase inhibitors. The knockdown of FAK, while not affecting cellular proliferation or migration, dramatically interferes with vascular morphogenesis and survival, mirroring in vivo findings. We propose a novel model of FAK signaling whereby one of the multifunctional roles of FAK as a signaling protein includes FAK as a phospho-regulated repressor of Rac activation, with important implications on interpretation of research experiments and therapeutic development.
منابع مشابه
Focal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle
Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...
متن کاملMelatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways
Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...
متن کاملInhibition of angiogenesis by a tenascin-c peptide which is capable of activating beta1-integrins.
In addition to humoral angiogenic factors, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), integrin-mediated adhesion of vascular endothelial cells to the extracellular matrix plays an important role in neovascularization. We recently found that TNIIIA2, a peptide derived from tenascin-C, induces functional activation of beta1 integrins. Here we in...
متن کاملDown regulation of GTPase regulator associated with the focal adhesion kinase (GRAF) gene expression in patients with acute myeloblastic leukemia
Introduction: GTPase regulator associated with focal adhesion kinase (GRAF) is a recently identified GTPase activating protein that has the tumor suppressor properties. However, the expression level of GRAF in leukemia had received less attention. The main purpose of this research was the evaluating of the expression level of GRAF in patients with acute myeloid leukemia (AML). Materials and met...
متن کاملInhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN)
Objective(s): The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms...
متن کامل